

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/dsharpplus/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/dsharpplus/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

VoiceNext natives for Windows

Certain functionality of DSharpPlus (particularly VoiceNext) relies on external libraries, available for download below.

For usage instructions, follow setup guide.

Opus and Sodium

	64-bit Windows (x64)
	Windows 64-bit (x64)

	Checksums

	32-bit Windows (x86)
	Windows 32-bit (x86)

	Checksums

FFmpeg for Windows

	64-bit Windows (x64)
	Windows 64-bit (x64)

	Checksums

	32-bit Windows (x86)
	Windows 32-bit (x86)

	Checksums

Licenses

Software provided here is licensed to you by respective rights holders under terms different than those of MIT License.

Opus

Opus is licensed under 3-clause BSD license.

Details are available on Opus License page [http://opus-codec.org/~epirat/OpusWeb//license/].

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of Internet Society, IETF or IETF Trust, nor the
names of specific contributors, may be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sodium

Sodium is licensed under ISC License.

Details are available on Sodium website [https://download.libsodium.org/doc/].

ISC LicenseCopyright (c) 2013-2017
Frank Denis

 Setting up VoiceNext

Setting up VoiceNext

Before you can use VoiceNext, you need to appropriately set it up. Due to how voice works, you need to install certain native
libraries before you can enjoy Discord’s voice.

1. Identify your OS

The most important part is identifying the Operating System and CPU, OS, and .NET implementation architecture for your
environment.

Windows

Find This PC, right-click it, and go to Properties. In there, look for System type, as shown in the picture below:

[image: Identify - Windows]

GNU/Linux

The first thing you will want to do is identifying your GNU/Linux distribution. You can do that by executing lsb_release -a.
That should provide you with following information:

[image: Identify - GNU/Linux]

If that fails, try ls -d1 /etc/* | grep '\-release$' | head -n 1 | xargs cat. Output should look more or less like this

[image: Identify - GNU/Linux]

Mac OS X

You use Mac, not much to identify here.

BSD

To identify your BSD (or other UNIX system), you need to execute uname -a. It gives output similar to this one:

[image: Identify - BSD]

2. Deploy your bot

Nothing much here, just deploy your bot as usual. If using .NETFX, copy the output files. When using .NET Core, publish the
project, then copy the result to the target.

3. Install necessary libraries

For voice to work, you will need libraries for Opus and Sodium. Thankfully, this is not hard to obtain.

Windows

Depending on whether your operating system is 32- or 64-bit, you will need x86 or x64 natives respectively. I have prebuilt
opus and sodium natives for Windows available for download here.

If you’re in doubt about which libraries to use, follow this flowchart:

[image: Natives flowchart]

To install those, just extract the .dll files from the inside to the directory where your output executable is. If debugging,
it’s going to be one of these:

	.NETFX: <project root>\bin\Debug\

	.NET Core: <project root>

Do note that when debugging, you will usually need 32-bit natives, regardless of OS architecture.

GNU/Linux

You will need to install libopus and libsodium from your distro repositories. Depending on your distribution, the package
names and installation method may vary.

Debian, Devuan, Raspbian, Ubuntu, and derivatives

Depending on your distro and version, you might need to install different packages.

	Debian/Devuan/Raspbian Oldstable: $ sudo apt-get install libopus0 libsodium13 libopus-dev libsodium-dev

	Debian/Devuan/Raspbian Stable: $ sudo apt-get install libopus0 libsodium18 libopus-dev libsodium-dev

	Ubuntu 14.04 LTS: $ sudo add-apt-repository ppa:chris-lea/libsodium && sudo apt-get update && sudo apt-get install libopus0 libsodium libopus-dev libsodium-dev

	Ubuntu 16.04 LTS, 16.10, 17.04: $ sudo apt-get install libopus0 libsodium18 libopus-dev libsodium-dev

Fedora

NOTE: I do not own a Fedora box, therefore the below might require tweaking:

$ sudo dnf install opus libsodium opus-devel libsodium-devel

Arch

NOTE: I do not own an Arch box, therefore the below might require tweaking:

$ sudo pacman -S opus libsodium

Gentoo

NOTE: I do not own a Gentoo box, therefore the below might require tweaking:

$ sudo emerge -atv opus libsodium

Mac OS X

NOTE: I do not own a Mac, therefore the below might require tweaking:

$ brew install opus libsodium

FreeBSD

On FreeBSD installing the libraries is as simple as executing the following:

pkg install opus libsodium

4. Optional: install FFmpeg

Windows

Depending on whether your operating system is 32- or 64-bit, you will need x86 or x64 FFmpeg build respectively. I have
slimmed down FFmpeg distribution for Windows available for download here.

GNU/Linux

You will need to install ffmpeg from your distro repositories. Depending on your distribution, the package names and
installation method may vary.

Debian, Devuan, Raspbian, Ubuntu, and derivatives

Depending on your distro and version, you might need to install different packages.

NOTE: The installation procedure for Debian Oldstable is experimental. I will not take any responsibility for any damage
caused to your system.

	Debian/Devuan/Raspbian Oldstable: $ echo 'deb http://ftp.debian.org/debian jessie-backports main' | sudo tee -a /etc/apt/sources.list && sudo apt-get update && sudo apt-get install ffmpeg

	Debian/Devuan/Raspbian Stable: $ sudo apt-get install ffmpeg

	Ubuntu 14.04 LTS: $ sudo add-apt-repository ppa:mc3man/trusty-media && sudo apt-get update && sudo apt-get install ffmpeg

	Ubuntu 16.04 LTS, 16.10, 17.04: $ sudo apt-get install ffmpeg

Fedora

NOTE: I do not own a Fedora box, therefore the below might require tweaking:

$ sudo dnf install ffmpeg

Arch

NOTE: I do not own an Arch box, therefore the below might require tweaking:

$ sudo pacman -S ffmpeg

Gentoo

NOTE: I do not own a Gentoo box, therefore the below might require tweaking:

$ sudo emerge -atv ffmpeg

Mac OS X

NOTE: I do not own a Mac, therefore the below might require tweaking:

$ brew install ffmpeg --with-fdk-aac --with-ffplay --with-freetype --with-frei0r --with-libass --with-libvo-aacenc --with-libvorbis --with-libvpx --with-opencore-amr --with-openjpeg --with-opus --with-rtmpdump --with-schroedinger --with-speex --with-theora --with-tools

FreeBSD

On FreeBSD installing FFmpeg is as simple as executing the following:

pkg install ffmpeg

 Getting started with DSharpPlus - your first DSharpPlus bot

Getting started with DSharpPlus - your first DSharpPlus bot

You’re still with me - good! You have created an application and a user for your bot. Now we will focus on bringing it to life.

In order for that to happen, you need to make a program that connects to discord as your bot.

This guide requires you to have solid basics in C#. Open your IDE. If you don’t have one installed, I recommend installing
one of the following:

	Visual Studio 2017 Community [https://www.visualstudio.com/thank-you-downloading-visual-studio/?sku=Community&rel=15]

	Visual Studio Code [https://code.visualstudio.com/download]

When installing Visual Studio 2017, make sure you select the .NET Core cross-platform development option.

[image: .NET Core in Visual Studio 2017]

This tutorial will be presented using Visual Studio 2017, however the instructions should still apply to VS Code and other .NET
IDEs (so long as they support .NET Core).

Note for Windows 7 users

If you’re using Windows 7, create a regular .NET Framework project (it’s required you target at least .NET 4.5; we recommend
4.7).

Make sure you read the article about Alternate WebSocket Client Implementations.

1. Creating your project

To start, you need to create a new project. Click the Create new project... button, and select Console App (.NET Core)
as your project template. Give it some name, in here it’s MyFirstBot.

[image: Step 1]

[image: Step 2]

2. Adding the NuGet package

Once you create your project, you will be presented with a blank project template, that only prints Hello World! to the console.
Before you embark on your journey, you need to add DSharpPlus package reference. Locate the Solution Explorer on the right
side of the screen.

[image: Step 3]

Right-click the project (as highlighted on the above picture), and select Manage NuGet Packages....

[image: Step 4]

NuGet package manager tab will open. In it, press Browse, and in the Search field, type DSharpPlus.

[image: Step 5]

Once this is done, select the DSharpPlus package, and on the right pane ensure that version selected is Latest stable,
then press Install.

[image: Step 6]

3. Making your first bot

Now that your project has the required DSharpPlus components, let’s move on to actually making the bot.

The first thing you will want to do is adding a using section for the library’s components in the code. You can do that
by adding using DSharpPlus; under using System;. Once that is done, locate the Main method, and delete all of its
contents. Create a new method below it, with the following signature:

static async Task MainAsync(string[] args)
{

}

Visual Studio will complain. Hover over Task, and apply the recommended solution. It should add
using System.Threading.Tasks; to your usings section.

Then, go back to Main, and place the following code in it: MainAsync(args).ConfigureAwait(false).GetAwaiter().GetResult();

Now, above the Main method, create a static field for your Discord client: static DiscordClient discord;. This field will
hold your DiscordClient instance, which you will be using to interact with Discord API.

Now go back inside MainAsync method. You need to initialize the client. Remeber that token I told you to take note of?
Copy it, you are about to use it.

Initialize the Discord client:

discord = new DiscordClient(new DiscordConfiguration
{
 Token = "<paste the token here>",
 TokenType = TokenType.Bot
});

You have initialized your client instance, but it does nothing yet. Let’s make it listen for incoming messages, and respond
with “pong” to messages that start with “ping”. For that, you need to utilize the @DSharpPlus.DiscordClient.MessageCreated event.
of the client. Let’s hook it then:

discord.MessageCreated += async e =>
{
 if (e.Message.Content.ToLower().StartsWith("ping"))
 await e.Message.RespondAsync("pong!");
};

Now, once the bot connects, it will respond with “pong!” to each message that starts with “ping”.

But that will happen only once you connect, so how do you do that? You use the @DSharpPlus.DiscordClient.ConnectAsync method.
of the client. You will need to await it, which is why you had to make an asynchronous Main method.

await discord.ConnectAsync();

This is not everything yet. If you start the bot now, it will just flash and quit. To prevent that, you need to add an
infinite wait at the end of your MainAsync method:

await Task.Delay(-1);

4. Putting it all together

Once you are done, your code will look more or less like this:

using System;
using System.Threading.Tasks;
using DSharpPlus;

namespace MyFirstBot
{
 class Program
 {
 static DiscordClient discord;

 static void Main(string[] args)
 {
 MainAsync(args).ConfigureAwait(false).GetAwaiter().GetResult();
 }

 static async Task MainAsync(string[] args)
 {
 discord = new DiscordClient(new DiscordConfiguration
 {
 Token = "<your token here>",
 TokenType = TokenType.Bot
 });

 discord.MessageCreated += async e =>
 {
 if (e.Message.Content.ToLower().StartsWith("ping"))
 await e.Message.RespondAsync("pong!");
 };

 await discord.ConnectAsync();
 await Task.Delay(-1);
 }
 }
}

If this is the case, you are ready to move on.

5. Testing

Hit F5. This will compile your code and run the project. If all went well, your bot should now be online and respond to
messages that start with ping.

If you’re a Windows 7 user, it won’t work. Read the Alternate WebSocket Client Implementations
on ways to fix the issue.

[image: Step 9]

If it works, congratulations! You can now try some of the more advanced subjects from the list on the left.

 Spicing your commands up with Interactivity module

Spicing your commands up with Interactivity module

Can bots feel? Well today you are going to find out.

1. Installing Interactivity

Using the procedures in the first bot article, install a NuGet package called DSharpPlus.Interactivity.

Now you need to enable Interactivity module on your DiscordClient. Add a new field to your bot’s Program class:
static InteractivityModule interactivity;

Visual Studio will complain, you also need to add using DSharpPlus.Interactivity; to your usings in both the command module
and the bot class.

Before you connect, enable the module on your client:

interactivity = discord.UseInteractivity();

This will enable the module.

2. Spicing up that hi command

Go back to the hi command. How about asking the bot how does it feel?

Interactivity allows you to wait for variety of user-triggered events, such as messages, reactions, or typing indicators. With
this, you can make the bot wait for a specific message.

This is what you’re going to do. Below the respond code, add the following:

var interactivity = ctx.Client.GetInteractivityModule();
var msg = await interactivity.WaitForMessageAsync(xm => xm.Author.Id == ctx.User.Id && xm.Content.ToLower() == "how are you?", TimeSpan.FromMinutes(1));
if (msg != null)
 await ctx.RespondAsync($"I'm fine, thank you!");

Let’s quickly dissect the code.

First, it gets the interactivity module from your client.

Next, it waits for a message that matches a predicate. In this case, the predicate waits for a message that was sent by the
user who invoked the command, and says “how are you?”. The wait has a limit of 1 minute. After that, the method returns.

Finally, it checks if a message was found. If it was, it’s going to be non-null, and it can thank the user for concern!

Start the bot, and try invoking ;;hi. After the bot responds, say how are you?. Then try again and don’t say that. Notice
the difference?

[image: Step 1]

4. Advanced subjects

Interactivity is covered more in-depth in Emzi0767’s Example bot #3 [https://github.com/Emzi0767/DSharpPlus-Example-Bot/tree/master/DSPlus.Examples.CSharp.Ex03]. If you want to check out all the cool things Interactivity can
do, make sure to check it out.

 I like living on the edge - give me the freshest builds

I like living on the edge - give me the freshest builds

We offer nightly builds for DSharpPlus. They contain bufixes and new features before the NuGet releases, however they are
not guaranteed to be stable, or work at all.

If you want to use them, you need to open your Package Manager Settings in Visual Studio, and add the following MyGet
feed to the package sources:

https://www.myget.org/F/dsharpplus-nightly/api/v3/index.json

Then open the NuGet interface for your project, check Prerelease, and make sure the package source is set to the MyGet
feed you just added.

Then just select Latest prerelease version of DSharpPlus packages, and install them.

You might need to restart Visual Studio for changes to take effect.

If you find any problems in the MyGet versions of the packages, please follow the instructions in Reporting issues
article.

But I’m running GNU/Linux, Mac OS X, or BSD!

If you’re running on a non-Windows OS, you’ll have to get your hands dirty. Prepare your text editor and file browser.

Inside ~/.nuget/NuGet directory, there should be a file called NuGet.config. It should look more or less like this:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <packageSources>
 <add key="nuget.org" value="https://api.nuget.org/v3/index.json" protocolVersion="3" />
 </packageSources>
</configuration>

Inside the packageSources element, you will need to add the following:

<add key="DSharpPlus MyGet" value="https://www.myget.org/F/dsharpplus-nightly/api/v3/index.json" />

Once that’s done, save the file. If you run dotnet restore right now, it should be able to restore the packages without problems.

 My ~~body~~ bot is ready, but I can’t keep my PC running 24/7!

My ~~body~~ bot is ready, but I can’t keep my PC running 24/7!

Typically, hosting a bot means it needs to run 24 hours a day, 7 days a week. While running your computer like that is
an option, it’s generally better to deploy your bot on a machine that can run 24/7.

There are 2 (although really 3) options for that. Unfortunately, none of them is free (or at least not permanently).

Purchasing a VPS or a dedicated server

The simplest, and probably most hassle-free (and maybe cheapest in the long run) option is to find a provider that will
lend you their machine or a virtual host so you can run your bot in there.

Generally, cheapest hosting options are all GNU/Linux-based, so it’s highly recommended you familiarize yourself with the
OS and its environment, particularly the shell (command line), and concepts such as SSH.

There are several well-known, trusted, and cheap providers:

	Scaleway [https://www.scaleway.com/]: Cheap, and powerful. Scalway is based in Europe, and has locations
in France and Netherlands. They offer x64 and ARM machines and VPSes.

	DigitalOcean [https://www.digitalocean.com/]: Considered the gold standard. DigitalOcean is based in
the US. Their offer ranges from standard to more specialized deployments.

	OVH [https://www.ovh.com/us/]: Based in EU and US. OVH is cheap, and used by many people. Their offer includes
free DDoS protection.

In addition to these, there are several hosting providers that offer free trials or in-service credit:

	Microsoft Azure [https://azure.microsoft.com/en-us/free/?cdn=disable]: $200 in-service credit,
to be used within month of registration. Requires credit or debit card for validation. Azure isn’t cheap, but it supports
both Windows and GNU/Linux-based servers. If you’re enrolled in Microsoft Imagine, it’s possible to get these cheaper or
free.

	Amazon Web Services [https://aws.amazon.com/free/]: Free for 12 months (with 750 compute hours per month). Not
cheap once the trial runs out, but it’s also considered industry standard in cloud services.

	Google Cloud Platform [https://cloud.google.com/free/]: $300 in-service credit, to be used
within year of registration. GCP is based in the US, and offers very scalable products. Like the above, it’s not the
cheapest of offerings.

I want to host at home

Perhaps you own a dedicated server machine, or you just have a computer that you can leave running 24/7. If your residential
connection is decent enough, you could try hosting your bot at home. This has the advantage of giving you full access to
hardware your code runs on, and only costs you as much as your electricity and internet bill. You will also need to take care
to secure your bot against outages.

You need to make sure you have all the lasted updates and patches along with all the necessary software installed. It’s generally
recommended your hosting machine has at least 2 CPU cores, and a decent amount of RAM.

I have a Pi, can’t that be used?

We have a special guide for Raspberry Pi.

 Sharding - for when your bot gets huge

Sharding - for when your bot gets huge

Sometimes, your bot becomes very large. More and more servers add it. Eventually, you will need to split the bot’s workload
a bit.

What is sharding?

In Discord, sharding describes a situation in which your bot initiates several connections to Discord. This is recommended for
bots that grow over 1000 guilds, and required if you go over 2500.

Each shard gets a different set of guilds, and they only get events appropriate to guilds on their shard.

How do I shard?

In DSharpPlus there are 2 ways to shard. The easy way - using @DSharpPlus.DiscordShardedClient, or the hard way, spawning
multiple @DSharpPlus.DiscordClient instances manually.

The easy way - DiscordShardedClient

DiscordShardedClient will automatically handle spawning, handling and controlling the appropriate amount of shards for your
bot. Additionally, all the modules offer extensions that enable the modules on all of the sharded client’s shards automatically.

Sharded client is fairly transparent when it comes to handling events, and since all events expose the DiscordClient that
emitted it, you can identify which shard did the event came from.

The hard way - multiple DiscordClient instances

This is basically operating much like DiscordShardedClient does internally, but you have to manually handle all the events
and shards.

This approach offers more control over your shards than the sharded client does, but it recommended for experienced developers
only.

 Your first digital broadcast - introduction to VoiceNext

Your first digital broadcast - introduction to VoiceNext

So you just dropped your new mixtape and it’s absolute fire. Wouldn’t it be nice to let your friends listen?

Audio in Discord is a fairly complicated subject, but thankfully, DSharpPlus makes it easy.

1. Installing VoiceNext

Using the procedures in the first bot article, install a NuGet package called DSharpPlus.VoiceNext.

Now you need to enable VoiceNext module on your DiscordClient. Add a new field to your bot’s Program class:
static VoiceNextClient voice;

Visual Studio will complain, you also need to add using DSharpPlus.VoiceNext; to your usings in both the command module
and the bot class.

Before you connect, enable the module on your client:

voice = discord.UseVoiceNext();

This will enable the module.

If you still have your command module, go to it, remove all the commands from previous examples, and add
using DSharpPlus.VoiceNext; to the usings section.

In your bot class, add EnableDms = false to your command config.

Remember to follow the setup guide. Make sure you have the required native components and ffmpeg in appropriate directory.

2. Connecting and disconnecting

Before the bot can play audio, it needs to connect to a voice channel. The most intuitive way to achieve this is by connecting
to the same channel as the user who invokes the command.

Create a new command, call it join. In it, you will want to do the following:

	Get the VoiceNext client.

	Check if the bot isn’t connected already.

	Fail if so.

	Check if the user is in a voice channel.

	Fail if not.

	Connect to voice.

	Let the user know it all went well.

You also need a way to disconnect from voice. Create a command called leave, and make it do the following:

	Get the VoiceNext client.

	Check if the bot is connected.

	Fail if not.

	Disconnect.

	Let the user know it all went well.

I encourage you to try and solve both of these issues yourself, however if you get stuck, here’s some reference:

[Command("join")]
public async Task Join(CommandContext ctx)
{
 var vnext = ctx.Client.GetVoiceNextClient();

 var vnc = vnext.GetConnection(ctx.Guild);
 if (vnc != null)
 throw new InvalidOperationException("Already connected in this guild.");

 var chn = ctx.Member?.VoiceState?.Channel;
 if (chn == null)
 throw new InvalidOperationException("You need to be in a voice channel.");

 vnc = await vnext.ConnectAsync(chn);
 await ctx.RespondAsync("👌");
}

[Command("leave")]
public async Task Leave(CommandContext ctx)
{
 var vnext = ctx.Client.GetVoiceNextClient();

 var vnc = vnext.GetConnection(ctx.Guild);
 if (vnc == null)
 throw new InvalidOperationException("Not connected in this guild.");

 vnc.Disconnect();
 await ctx.RespondAsync("👌");
}

If you run your bot now, join a voice channel, and call ;;join, the bot should join the voice channel. Conversely, invoking
;;leave will make the bot disconnect.

[image: Joining]

[image: Leaving]

3. Broadcasting

Your bot can now connect and disconnect, however it still cannot do the most important thing - broadcast audio.

Let’s change that. Create a new command called play. Give it a string argument called file, and mark it with
RemainingText attribute. It will make that
argument capture all the text after the command’s name.

What you want to do right now, is something along these lines:

	Get the VoiceNext client.

	Check if the bot is connected.

	Fail if not.

	Check if the specified file exists.

	Fail if not.

After that, add using System.IO; and using System.Diagnostics; to your usings. This is where things get really fun.

You cannot send audio encoded with anything but Opus to Discord, and to encode audio to Opus, you need to get it in raw PCM
form. This is where ffmpeg comes in. It can transcode to and from various audio and video formats, including PCM.

In order to get audio that we can use with Discord, you will need to spawn an ffmpeg instance, feed it your file, and grab
the PCM data from its output stream.

Then you will be copying from that stream to Discord, one sample at a time. The whole command should look more or less like
this:

[Command("play")]
public async Task Play(CommandContext ctx, [RemainingText] string file)
{
 var vnext = ctx.Client.GetVoiceNextClient();

 var vnc = vnext.GetConnection(ctx.Guild);
 if (vnc == null)
 throw new InvalidOperationException("Not connected in this guild.");

 if (!File.Exists(file))
 throw new FileNotFoundException("File was not found.");

 await ctx.RespondAsync("👌");
 await vnc.SendSpeakingAsync(true); // send a speaking indicator

 var psi = new ProcessStartInfo
 {
 FileName = "ffmpeg",
 Arguments = $@"-i ""{file}"" -ac 2 -f s16le -ar 48000 pipe:1",
 RedirectStandardOutput = true,
 UseShellExecute = false
 };
 var ffmpeg = Process.Start(psi);
 var ffout = ffmpeg.StandardOutput.BaseStream;

 var buff = new byte[3840];
 var br = 0;
 while ((br = ffout.Read(buff, 0, buff.Length)) > 0)
 {
 if (br < buff.Length) // not a full sample, mute the rest
 for (var i = br; i < buff.Length; i++)
 buff[i] = 0;

 await vnc.SendAsync(buff, 20);
 }

 await vnc.SendSpeakingAsync(false); // we're not speaking anymore
}

If you did everything right, your bot should now be playing music. If it is, congratulations.

[image: Playing]

[image: Console]

 Alternative WebSocket client implementations

Alternative WebSocket client implementations

For operating systems and runtimes that do not support the native .NET WebSocket implementation, such as Windows 7 or Mono,
you need to use an alternative WebSocket client implementation.

Available implementations

Currently, there are 3 implementations available on NuGet:

	DSharpPlus.WebSocket.WebSocket4Net: This implementation is recommended if you’re targeting .NET Framework 4.5+, and using
Windows 7 or Mono 4.4.2.

	DSharpPlus.WebSocket.WebSocket4NetCore: This updated version of WebSocket.WebSocket4Net is recommended if you’re targeting
.NET Core [https://github.com/dotnet/core] on Windows 7, and solely that platform.

	DSharpPlus.WebSocket.WebSocketSharp: This implementation is recommended if you’re targeting .NET Framework 4.5+, and using
Mono version higher than 4.4. This implementation will also work on Windows 7, however there are known issues with it and
the library.

Making your own implementation

If none of these fit your criteria, you can make your own implementation, using the existing ones as a template:

	Source for WS4Net client implementation [https://github.com/NaamloosDT/DSharpPlus/blob/master/DSharpPlus.WebSocket.WebSocket4Net/WebSocket4NetClient.cs]

	Source for WS4NetCore client implementation [https://github.com/NaamloosDT/DSharpPlus/blob/master/DSharpPlus.WebSocket.WebSocket4NetCore/WebSocket4NetCoreClient.cs]

	Source for WS# client implementation [https://github.com/NaamloosDT/DSharpPlus/blob/master/DSharpPlus.WebSocket.WebSocketSharp/WebSocketSharpClient.cs]

Using alternative WebSocket client implementations

First, you need to install the desired WebSocket client implementation. If you’re installing from NuGet, the procedure is the
same as for all other DSharpPlus packages.

Then you need to indicate that DSharpPlus should use that specific WebSocket implementation. This is done by calling
@DSharpPlus.DiscordClient.SetWebSocketClient``1 method with appropriate generic argument right after you instantiate your
Discord client.

For example, for WS4Net client, you need to call it as:

client.SetWebSocketClient<WebSocket4NetClient>();

For WS4NetCore:

client.SetWebSocketClient<WebSocket4NetCoreClient>();

Similarly, for WS#:

client.SetWebSocketClient<WebSocketSharpClient>();

For any other implementation, make sure it’s a class that inherits from @DSharpPlus.Net.WebSocket.BaseWebSocketClient class
and has a public parameter-less constructor.

Lastly, don’t forget to add using DSharpPlus.Net.WebSocket; at the top of your .cs file.

 Wiretapping for dummies - receiving and saving voice data

Wiretapping for dummies - receiving and saving voice data

So you want your bot to listen to what others say, and then maybe do something with that.

DSharpPlus supports incoming voice, and, much like with outgoing voice, the data you get is raw PCM data.

1. Setting it up

You can get rid of the play command from the previous example. Other than that, you need to enable incoming voice in your
voice client configuration. Replace the line where you enable voice with the following:

voice = discord.UseVoiceNext(new VoiceNextConfiguration
{
 EnableIncoming = true
});

2. Hooking it up

The first thing to do when you want to listen is hooking the appropriate events. VoiceNextConnection offers 2:
@DSharpPlus.VoiceNext.VoiceNextConnection.UserSpeaking and @DSharpPlus.VoiceNext.VoiceNextConnection.VoiceReceived.

First, in your command module, you will want to create a non-command method for this handler:

public async Task OnVoiceReceived(VoiceReceiveEventArgs ea)
{

}

Visual Studio will complain about missing classes, add using DSharpPlus.EventArgs; to your usings section.

Then, in your join command, you will want to attach it to an appropriate event, and in the leave command, you will
want to detach it.

Next up, you want to add using System.Collections.Concurrent and using System.Linq; to your usings. You will also need to
create a dictionary for source -> stream mapping if you want to separate the incoming voice:
private ConcurrentDictionary<uint, Process> ffmpegs;. Make sure you initialize it in your join command and null it in
leave. Additionally, before you null it, you will need to deinitialize all the ffmpeg instances there.

Finally, in OnVoiceReceived, you need to do your processing logic. It will look more or less like this:

	Check if the source has an ffmpeg source.

	Create one if not. Use existing otherwise.

	Pipe the data to the instance.

Once all this is done, the entire class should look more or less like this:

using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using DSharpPlus;
using DSharpPlus.CommandsNext;
using DSharpPlus.CommandsNext.Attributes;
using DSharpPlus.EventArgs;
using DSharpPlus.VoiceNext;

namespace MyFirstBot
{
 public class MyCommands
 {
 private ConcurrentDictionary<uint, Process> ffmpegs;

 [Command("join")]
 public async Task Join(CommandContext ctx)
 {
 var vnext = ctx.Client.GetVoiceNextClient();

 var vnc = vnext.GetConnection(ctx.Guild);
 if (vnc != null)
 throw new InvalidOperationException("Already connected in this guild.");

 var chn = ctx.Member?.VoiceState?.Channel;
 if (chn == null)
 throw new InvalidOperationException("You need to be in a voice channel.");

 vnc = await vnext.ConnectAsync(chn);

 this.ffmpegs = new ConcurrentDictionary<uint, Process>();
 vnc.VoiceReceived += OnVoiceReceived;

 await ctx.RespondAsync("👌");
 }

 [Command("leave")]
 public async Task Leave(CommandContext ctx)
 {
 var vnext = ctx.Client.GetVoiceNextClient();

 var vnc = vnext.GetConnection(ctx.Guild);
 if (vnc == null)
 throw new InvalidOperationException("Not connected in this guild.");

 vnc.VoiceReceived -= OnVoiceReceived;
 foreach (var kvp in this.ffmpegs)
 {
 await kvp.Value.StandardInput.BaseStream.FlushAsync();
 kvp.Value.StandardInput.Dispose();
 kvp.Value.WaitForExit();
 }
 this.ffmpegs = null;

 vnc.Disconnect();

 await ctx.RespondAsync("👌");
 }

 public async Task OnVoiceReceived(VoiceReceiveEventArgs ea)
 {
 if (!this.ffmpegs.ContainsKey(ea.SSRC))
 {
 var psi = new ProcessStartInfo
 {
 FileName = "ffmpeg",
 Arguments = $@"-ac 2 -f s16le -ar 48000 -i pipe:0 -ac 2 -ar 44100 {ea.SSRC}.wav",
 RedirectStandardInput = true
 };

 this.ffmpegs.TryAdd(ea.SSRC, Process.Start(psi));
 }

 var buff = ea.Voice.ToArray();

 var ffmpeg = this.ffmpegs[ea.SSRC];
 await ffmpeg.StandardInput.BaseStream.WriteAsync(buff, 0, buff.Length);
 await ffmpeg.StandardInput.BaseStream.FlushAsync();
 }
 }
}

If you run the bot, connect to a voice channel now, and start speaking, you will notice wav files popping up in the bot
project directory. If they are, congratulations, your bot is recording, and you are on a list somewhere!

 I broke something, and I need it fixed!

I broke something, and I need it fixed!

We always try to fix bugs, and make sure that when we release the next version of DSharpPlus, everything is polished and
working. However, DSharpPlus is a large codebase, and we can’t always catch all the bugs, or notice all the regressions
that happen while we fix bugs or implement new issues.

GitHub issue tracker

If you find a bug, come up with a new idea, or just want to report something, you can open an issue on our
GitHub Issue Tracker [https://github.com/NaamloosDT/DSharpPlus/issues].

When opening an issue, make sure to include as much detail as possible. If at all possible, please include:

	Steps to reproduce the issue

	What were you trying to achieve

	Expected/acutal result

	Stack traces, exception types, messages

	Attempted solutions

Discord

Some questions, most notably questions on using the library, are better asked on Discord. You can find the server links in
Introduction.

Contributing

Lastly, while we understand that not everyone is an expert programmer, we would appreciate it if you could fix any issues you
find and submit a Pull Request on GitHub. This would reduce the amount of work we would have to do.

When contributing, ensure your code matches the style of the rest of the library, and that you test the changes you make, and
catch any possible regressions.

 Creating an application for your bot

Creating an application for your bot

Before you can begin making your DSharpPlus bots, you need to create OAuth2 applications and bot users for them, so
they can interact with users.

It is recommended you keep a notepad or any other text editor open so you can note down the important things.

1. Creating an OAuth2 application

Head over to My apps [https://discordapp.com/developers/applications/me] on Discord Developers
website. Once there, press the big button with a + symbol on it. The one that says New App.

[image: Step 1]

2. Giving it an identity

You will be presented with a form that asks for application’s name, redirect URIs, description, and avatar.

You want to fill in the name1 and description2. If you want, you can also give it an avatar3.

When you’re ready, press the Create App button below the form.

[image: Step 2]

3. Creating a bot user

Once the application is created, you will need to create a bot user for the application, so the users can interact with it.

Press the Create a Bot User button, and in the dialog that pops up, select Yes, do it!

[image: Step 3]

4. Bot’s credentials

Once this is done, a section called APP BOT USER will appear. Find a field called Token in it, and press
click to reveal next to it to get your bot’s token. Note this token down, you will need it later.

Another thing you also want to note down, is the Client ID. You will need that in a moment.

You can also check the Public Bot checkbox, if you’re so inclined. Once this is all done, press the Save changes
button on the bottom. Congratulations. Your bot can now interact with people, although there’s still a long way before it
actually does.

[image: Step 4]

5. Inviting it to your guild

So the bot exists, but it can’t talk anywhere yet. You will want to invite it to your guild. This is done by following an
invite link. An invite link generally looks like this:

https://discordapp.com/oauth2/authorize?client_id=YOUR_CLIENT_ID&scope=bot&permissions=DESIRED_PERMISSIONS

For now, copy the link, substitute DESIRED_PERMISSIONS with 0, and YOUR_CLIENT_ID with the Client ID you noted down
earlier. Paste it in your browser, select your bot from the dropdown, press Authorize, and the bot should appear in
your server.

If you want to calculate the permissions, I recommend using a permission calculator. My personal recommendation is
FiniteReality’s Permission Calculator [https://finitereality.github.io/permissions/], which can also generate invite
links.

6. Making it come online

Now that this is all completed, head over to Basic bot to make the bot come online.

 Understanding and using events in DSharpPlus

Understanding and using events in DSharpPlus

The events in DSharpPlus use the Task Asynchronous Pattern to execute. In essence, this means that all event handler methods
must return a Task.

TAP versus async void

DSharpPlus is a largely asynchronous library, and, as such, most interactions with Discord API happen asynchronously.

.NET offers async void methods for asynchronous event handlers, however this method has numerous major flaws, most notably
the fact that these methods offer no control over their execution, which means that once one of these methods is fired, you
don’t know whether the execution has finished, or not. Another major flaw is that should an unhandled exception occur in such
a method, the entire CLR will crash, as you cannot catch that exception. Such exceptions are also hard to debug, as they often
appear as something completely unrelated during runtime.

To this end, DSharpPlus offers TAP-based events. They come in 2 flavours: parametrised, and parameter-less.

Parameter-less event handlers

Parameter-less events take no arguments, and have to return a Task. The handlers themselves can be async, and they can
use await inside. You can use them in 4 different ways:

You can create asynchronous anonymous methods to attach as event handlers, for example:

discord.Event += async () =>
{
 await SomethingAsync();
}

discord.Event += () =>
{
 // non-async code here
 return Task.CompletedTask; // or Task.Delay(0); if targeting .NET 4.5.x
}

discord.Event += MyEventHandlerMethod;
// later
async Task MyEventHandlerMethod()
{
 await SomethingAsync();
}

discord.Event += MyEventHandlerMethod;
// later
Task MyEventHandlerMethod()
{
 // non-async code here
 return Task.CompletedTask; // or Task.Delay(0); if targeting .NET 4.5.x
}

Parameterized event handlers

This is largely similar to parameter-less, except these event handlers take appropriate EventArgs, that are derived from
DiscordEventArgs class.

discord.MessageCreated += async e =>
{
 await e.Message.RespondAsync("Hi");
}

discord.MessageCreated += () =>
{
 // non-async code here
 return Task.CompletedTask; // or Task.Delay(0); if targeting .NET 4.5.x
}

discord.MessageCreated += MyEventHandlerMethod;
// later
async Task MyEventHandlerMethod(MessageCreatedEventArgs e)
{
 await e.Message.RespondAsync("Hi");
}

discord.MessageCreated += MyEventHandlerMethod;
// later
Task MyEventHandlerMethod()
{
 // non-async code here
 return Task.CompletedTask; // or Task.Delay(0); if targeting .NET 4.5.x
}

 Talking with the bot - adding commands for enhanced user interaction

Talking with the bot - adding commands for enhanced user interaction

You now have a basic bot. In order to allow users to interact with it easily, you will want to add some commands to it.
This is done using the CommandsNext module, which will not only handle, registering and executing commands for you, but
it will also make grabbing additional data for your commands easy.

1. Before we continue

Right now, your bot is console-mute. Let’s change it. Let’s make it output all information about its state and doings.

To do that, add the following options to your DiscordConfig:

UseInternalLogHandler = true,
LogLevel = LogLevel.Debug

2. Installing CommandsNext

Using the procedures in the previous article, install a NuGet package called DSharpPlus.CommandsNext.

Now you need to enable CommandsNext module on your DiscordClient. Add a new field to your bot’s Program class:
static CommandsNextModule commands;

Visual Studio will complain, you also need to add using DSharpPlus.CommandsNext; to your usings.

Before you connect, enable the module on your client:

commands = discord.UseCommandsNext(new CommandsNextConfiguration
{
 StringPrefix = ";;"
});

This will enable the module, and use ;; as the command prefix for your bot.

3. Creating a command module

First, you need to create a new class to hold your commands. In this example, we’ll call it MyCommands.

Once it’s created, you should be presented with a file that looks like this:

using System;
using System.Collections.Generic;
using System.Text;

namespace MyFirstBot
{
 class MyCommands
 {
 }
}

Add a public modifier to the class. That class will now serve as your command module.

Before you can proceed, add using System.Threading.Tasks;, using DSharpPlus;,
using DSharpPlus.CommandsNext;, and using DSharpPlus.CommandsNext.Attributes; to the using section.

Go back to your main bot class, and below the command module initialisation, add the following:

commands.RegisterCommands<MyCommands>();

This will enable all the commands in your command module.

The class should now look like this:

using System;
using System.Threading.Tasks;
using DSharpPlus;
using DSharpPlus.CommandsNext;

namespace MyFirstBot
{
 class Program
 {
 static DiscordClient discord;
 static CommandsNextModule commands;

 static void Main(string[] args)
 {
 MainAsync(args).ConfigureAwait(false).GetAwaiter().GetResult();
 }

 static async Task MainAsync(string[] args)
 {
 discord = new DiscordClient(new DiscordConfig
 {
 Token = "<your token here>",
 TokenType = TokenType.Bot,
 UseInternalLogHandler = true,
 LogLevel = LogLevel.Debug
 });

 discord.MessageCreated += async e =>
 {
 if (e.Message.Content.ToLower().StartsWith("ping"))
 await e.Message.RespondAsync("pong!");
 };

 commands = discord.UseCommandsNext(new CommandsNextConfiguration
 {
 StringPrefix = ";;"
 });

 commands.RegisterCommands<MyCommands>();

 await discord.ConnectAsync();
 await Task.Delay(-1);
 }
 }
}

4. Creating your first command

So now that you have your module, you want to add some commands to it. Let’s add a first one.

But before you do, let’s explain a couple concepts.

What are commands? How do they work? How do I make the library recognize something as a command?

Commands are basically methods with specific signatures. All commands must be public instance methods, that return a Task.
They also need to take CommandContext as first argument.

Commands work by invoking the method which is tied to the command when any users sends a message that consists of a prefix,
command name, and its arguments, for example: !hi.

Commands are marked with a special attribute. When you register commands, the library looks for methods with that attribute
and marks these methods as commands.

Armed with that knowledge, let’s create your first command, a simple “hi, user!”.

In the class, create a public async method, that returns a Task, and call it Hi. Make CommandContext its first argument. It
should look like this:

public async Task Hi(CommandContext ctx)
{

}

Now, put the following code inside that method: await ctx.RespondAsync($"👋 Hi, {ctx.User.Mention}!");

You’re not ready yet. Above the method, put the Command attribute. It should look like this: [Command("hi")]

Put together, the class should now look like this:

using System;
using System.Collections.Generic;
using System.Text;
using System.Threading.Tasks;
using DSharpPlus;
using DSharpPlus.CommandsNext;
using DSharpPlus.CommandsNext.Attributes;

namespace MyFirstBot
{
 public class MyCommands
 {
 [Command("hi")]
 public async Task Hi(CommandContext ctx)
 {
 await ctx.RespondAsync($"👋 Hi, {ctx.User.Mention}!");
 }
 }
}

What this command will do is posting a message that contains the :wave: emoji, and says Hi, followed by a mention of the
user who invoked the command.

Once this is all done, hit F5, and notice that console will light up with notifications. Go to Discord, and type ;;hi.
Your bot should now respond. If it did, congratulations!

[image: Step 1]

5. Using arguments

Close your bot, sit down, and listed to me.

CommandsNext is capable of automatically converting user-supplied data to a variety of types. The default argument converters
can convert to the following:

	Integral types: byte, sbyte, ushort, short, uint, int, ulong, long

	Floating-point types: float, double, decimal

	Text and character types: string, char

	Boolean types: bool

	Date and time types: DateTime, DateTimeOffset, TimeSpan

	Discord entities: DiscordGuild, DiscordChannel, DiscordMember, DiscordUser, DiscordRole, DiscordMessage, DiscordEmoji

Using these is as simple as declaring additional arguments for your command function. Let’s say you want to create a command
that generates a random number between the two specified numbers. You can do it by adding two int arguments to your function.

For example:

[Command("random")]
public async Task Random(CommandContext ctx, int min, int max)
{
 var rnd = new Random();
 await ctx.RespondAsync($"🎲 Your random number is: {rnd.Next(min, max)}");
}

Now, if you hit F5, and go to your server, you can call ;;random 0 10, and it will respond with a random number between 0
and 10 exclusive.

[image: Step 2]

6. Advanced subjects

Commands are covered more in-depth in Emzi0767’s Example bot #2 [https://github.com/Emzi0767/DSharpPlus-Example-Bot/tree/master/DSPlus.Examples.CSharp.Ex02]. If you want to check out all the cool things CommandsNext can
do to make your life easier, make sure to check it out.

 I updated the library and now I’m drowning in red underline!

I updated the library and now I’m drowning in red underline!

3.0 was a major breaking change compared to 2.0. A lot has changed internally, and even more externally.

Among the breaking changes there are:

	Most classes were organized into namespaces.

	Several classes and methods were renamed to maintain consistency with the rest of the library.

	All events were renamed to be in the past tense.

	@DSharpPlus.Entities.DiscordEmbed instances are no longer constructed directly; instead, they are built via the brand-new
@DSharpPlus.Entities.DiscordEmbedBuilder.

	All colors are now passed as instances of @DSharpPlus.Entities.DiscordColor.

	Concept of default channel has been removed as it no longer exists; this means that you can no longer create invites to
guilds directly.

	Modules are now based on an abstract class rather than an interface.

	A brand-new ratelimit handler was implemented.

The list of changes goes on, but the above are what affects the consumers of the library. Some of them require major changes to
your code.

Fixing namespace issues.

One of the fastest fixes is adding missing using instructions to your code. For entities such as DiscordUser,
DiscordChannel, etc. this requires adding DSharpPlus.Entities namespace. Exceptions lie in DSharpPlus.Exceptions, event
arg classes can be found in DSharpPlus.EventArgs, and network components are in DSharpPlus.Net.

Major renames

Several classes and methods were renamed to fit the current naming scheme in the library. Most notable ones are:

	DiscordConfig -> DiscordConfiguration

	CommandExecutedEventArgs -> CommandExecutionEventArgs

	SnowflakeObject.CreationDate -> SnowflakeObject.CreationTimestamp

	VoiceReceivedEventArgs -> VoiceReceiveEventArgs

	DiscordMessage.EditAsync() -> DiscordMessage.ModifyAsync()

	SocketDisconnectEventArgs -> SocketCloseEventArgs

	DiscordMember.TakeRoleAsync() -> DiscordMember.RevokeRoleAsync()

	MessageReactionRemoveAllEventArgs -> MessageReactionsClearEventArgs

Event renames

All events received a rename to maintain consistent naming across the library. If your event shows up as not found, try adding
d or ed to the end of its name.

Embed woes

Embeds can no longer be constructed or modified directly. Instead, you have to use the embed builder. For the most part, this
can be achieved using Find/Replace and doing new DiscordEmbed -> new DiscordEmbedBuilder.

On top of that, to add fields to an embed, you no longer create a new list for fields and assign it to Fields, but instead
you use the .AddField() method on the builder.

To modify an existing embed, pass said embed to builder’s constructor. The builder will use it as a prototype.

Color changes

This one is easy to fix for the most part. For situation where you were doing e.g. Color = 0xC0FFEE, you now do
Color = new DiscordColor(0xC0FFEE). This has the added advantage of letting you create a color from 3 RGB values or parse
an RGB string.

Default channel removal

DefaultChannel no longer exists on guilds, and, as such, DiscordGuild.CreateInviteAsync() is also gone, as it relied on
that property.

The new concept of “default” channel is a fallback, and is basically top channel the user can see. In the library this is
facilitated via DiscordGuild.GetDefaultChannel().

Module changes

The IModule interface was removed, and replaced with BaseModule class. The most notable change is that your module should
no longer define the field which holds your instance of DiscordClient, as that’s on the base class itself. On top of that,
you need to change modifiers of .Setup() from public to protected internal override.

New ratelimit handler

This does not actually cause any in-code changes, however the behavior of the REST client and the way requests are handled
changes drastically.

The new handler is thread-safe, and uses queueing to handle REST requests, and should bucket requests properly now.

 I’m broke and all I have is a Pi. How do I host my bot?

I’m broke and all I have is a Pi. How do I host my bot?

Hosting a small bot doesn’t require an almighty supercomputer. If performance is not a big concern for your bot, you
might want to consider buying a Raspberry Pi (or using one you already have). They are $35 ARM-based computers, which
should sport more than enough power to host a bot that doesn’t interact with too many servers or people.

Raspberry Pi comes in 4 versions:

	Raspberry Pi 1 comes in 4 variants: A, A+, B, and B+. They all feature a single-core 700MHz ARMv6z CPU, and 512MB
RAM (with the exception of A, which has only 256MB). The A models have a single USB 2.0 port and no Ethernet, the B model
has 2 USB 2.0 ports, and 10/100MBit Ethernet, B+ features 10/100 Ethernet and 4 USB 2.0 ports.

	Raspberry Pi 2 has a single variant: model B. It comes with a quad-core 900MHz ARMv7-A CPU, 1GB RAM, 10/100 Ethernet
port, and 4 USB 2.0 ports.

	Raspberry Pi 3, like the 2, only has model B. Features quad-core 1.2GHz ARMv8-A 64-bit CPU (although the default OS is
32-bit), 1GB RAM, 10/100 Ethernet, 802.11n Wi-Fi, Bluetooth, and 4 USB 2.0 ports.

	Raspberry Pi Zero is smaller than the other options, but at the cost of having a single-core 1GHz ARMv6Z CPU, 512MB
RAM, and a single Micro-USB 2.0 port. Later revisions also have 802.11n Wi-Fi and Bluetooth.

There are also several clones of Raspberry Pi, some of which pack more computing power. There are 4 ways to run a bot on your
Pi. Depending on the board you have, your options might be limited.

Method 1: Use a prebuilt .NET Core docker image

This method requires an ARMv7- or ARMv8-based board, with 32-bit OS.

This method is probably the most recommended, as it already packages the .NET Core runtime into a Docker container with all
the necessary utilities required to host your bot. On top of that, it also takes care of properly isolating your bot from
the OS.

	Login to your Pi via SSH or serial connection.

	Execute curl -sSL https://get.docker.com | sudo sh. This will install Docker and all the required dependencies.

	Add your user to docker group (sudo usermod -aG docker $USER). This is optional, but if you don’t do that, you will
need to execute all Docker commands with sudo. After you do this, you will need to disconnect (or logout) and connect
again.

	Go to /tmp (cd /tmp).

	Download the prebuilt docker image
(curl -LO https://dsharpplus.emzi0767.com/rpi/armhf-netcore2.0.tar.xz).

	Extract the .xz file (xz -dvv armhf-netcore2.0.tar.xz).

	Load the image (cat armhf-netcore2.0.tar | docker load).

	Remove the temporary file (rm armhf-netcore2.0.tar).

	Start a new container using the image (docker run -dti --name=mybot armhf/netcore2.0).

	Attach to the container (docker attach mybot).

You will be dropped into a shell for the default user dotnet. The password is netdot, and sudo access is enabled. It is
advised you change the password by doing passwd. Once you do that, detach from the container (Ctrl+P, Ctrl+Q).

You need to make your bot target .NET Core 2.0 (netcoreapp2.0), and publish it. To build and publish, you do the following (using
dotnet CLI):

	Clean your previous build (dotnet clean -c Release).

	Restore packages (dotnet restore).

	Build your project in Release configuration for .NET Core 2.0 (dotnet build -c Release -f netcoreapp2.0).

	Publish your project (dotnet publish -c Release -f netcoreapp2.0).

Your build artifacts will be placed in bin/Release/netcoreapp2.0/publish. Package them and transfer them to your Pi. I recommend
packing as a .tar archive using a program like 7-Zip. Once on the Pi, you will need to copy your bot data to your Docker
container:

	Navigate to where you uploaded the archive.

	Copy the archive to the container (docker cp mybot.tar mybot:/home/dotnet/tmp/mybot.tar). You need to replace mybot.tar with
the actual archive name.

	Reattach to the container (docker attach mybot).

	Inside, navigate to ~/tmp (cd ~/tmp).

	Extract and delete the archive (tar xf mybot.tar && rm mybot.tar).

	Create a directory for your bot inside ~/apps (mkdir ~/apps/mybot).

	Copy the bot files to the directory and delete the temporary files (cp -rf * ~/apps/mybot && rm -rf *).

	Navigate to the bot’s directory (cd ~/apps/mybot).

	Start your bot dotnet MyBot.dll.

In the above, replace mybot with the name of your bot (without spaces), and MyBot.dll with your bot’s entry DLL name. You
can now detach, your bot is running. Should you ever need to update your bot, just reattach to the container, stop the bot using
Ctrl+C, then repeat the above steps.

Method 2: Install .NET Core 2.0 runtime manually

This method has the same requirements as the first method (ARMv7 or ARMv8 CPU, with 32-bit OS).

This method will install a shared .NET Core 2.0 runtime on your device. This is particularly useful if you intend to run more
than one .NET Core application on the device. To install the runtime, do the following:

	Login to your Pi via SSH or serial connection.

	Install necessary prerequisites (sudo apt-get install curl libunwind8 gettext).

	Go to /tmp (cd /tmp).

	Download .NET Core 2.0 ARM runtime [https://dotnetcli.blob.core.windows.net/dotnet/Runtime/release/2.0.0/dotnet-runtime-latest-linux-arm.tar.gz]
(curl -LO https://dotnetcli.blob.core.windows.net/dotnet/Runtime/release/2.0.0/dotnet-runtime-latest-linux-arm.tar.gz).

	Create a directory called dotnet in /opt (sudo mkdir /opt/dotnet).

	Extract the runtime to the directory (sudo tar xzf dotnet-runtime-latest-linux-arm.tar.gz -C /opt/dotnet).

	Create a softlink for the dotnet binary in /usr/local/bin (sudo ln -s /opt/dotnet/dotnet /usr/local/bin/dotnet).

	Clean up (rm dotnet-runtime-latest-linux-arm.tar.gz).

	Verify that the installation was successful (dotnet --info).

If you were successful, you should see something to this effect:

pi@raspberry:/tmp $ dotnet --info

Microsoft .NET Core Shared Framework Host

 Version : 2.0.0
 Build : e8b8861ac7faf042c87a5c2f9f2d04c98b69f28d

You need to make your bot target .NET Core 2.0 (netcoreapp2.0), and publish it. To build and publish, you do the following (using
dotnet CLI):

	Clean your previous build (dotnet clean -c Release).

	Restore packages (dotnet restore).

	Build your project in Release configuration for .NET Core 2.0 (dotnet build -c Release -f netcoreapp2.0).

	Publish your project (dotnet publish -c Release -f netcoreapp2.0).

Your build artifacts will be placed in bin/Release/netcoreapp2.0/publish. Package them and transfer them to your Pi. From there,
unpack, and run by doing dotnet Project.Name.dll. For example, if your project is named MyBot, then the command will be
dotnet MyBot.dll.

What if the version is not 2.0.0?

If the reported .NET Core runtime version is different from 2.0.0, but for example 2.0.1, you will need to tweak your csproj file
and build environment a bit.

	Add the following feed to your NuGet sources: https://dotnet.myget.org/F/dotnet-core/api/v3/index.json. This is the .NET Core
MyGet feed.

	Open your .csproj file, and inside the root (<Project>) element, create the following element:

<PropertyGroup>
 <RuntimeFrameworkVersion>2.0.1</RuntimeFrameworkVersion>
</PropertyGroup>

Of course, replace 2.0.1 with the actual version reported by dotnet --info.

Method 3: Package your bot as self-contained app

This method has the same requirements as the first method (ARMv7 or ARMv8 CPU, with 32-bit OS).

This method will cause your application to package a copy of the runtime with your application. This approach is good for situations
where you don’t want to (or can’t) install the runtime on the target or don’t intend to run multiple .NET Core applications. It’s not
suitable for multiple application scenarios, however, as this grows applications size by a large margin.

You need to make your bot target .NET Core 2.0 (netcoreapp2.0), and publish it for ARM Linux runtime. To build and publish, you do the
following (using dotnet CLI):

	Clean your previous build (dotnet clean -c Release).

	Restore packages (dotnet restore).

	Build your project in Release configuration for .NET Core 2.0 (dotnet build -c Release -f netcoreapp2.0).

	Publish your project (dotnet publish -c Release -f netcoreapp2.0 -r linux-arm).

Your build artifacts will be placed in bin/Release/netcoreapp2.0/linux-arm/publish. Package them and transfer them to your Pi. Before
you can run it, you will need to make a binary called Your.Project executable. For example, if your project is named MyBot, you will need
to chmod +x MyBot.

After all is done, you can run your bot by doing ./Your.Project from the directory it’s in. Of course, replace Your.Project with the
actual binary name.

Method 4: Run your bot using Mono

This method can be utilized for all board flavours (ARMv6-, ARMv7, and ARMv8-based), no matter the OS bitness (32- and 64-bit should work).

Since Mono neither is .NET Core, nor implements its APIs, this method will only work if you target .NETFX (.NET Framework 4.5, 4.6, or 4.7).
Mono runtime has several caveats. It’s notorious for being buggy, so this might not always work.

To proceed, you will need to install Mono runtime on your device, and populate its SSL cache.

	Using your package manager, install Mono runtime (Debian/Raspbian: sudo apt-get install mono-complete).

	Populate the Mono SSL certificate cache (cert-sync --user /etc/ssl/certs/ca-certificates.crt).

You will also need to appropriately prepare your project. Since Mono doesn’t support .NET WebSocket implementation, you will need to follow
the Alternate WebSocket client instructions.

Once all is done, build your project, and transfer the artifacts to the Pi. Assuming your artifacts are in ~/mybot and the executable is
called MyBot.exe, you can run your bot by navigating to the directory (cd ~/mybot) and executing the executable with Mono (mono MyBot.exe).

Unfortunately, due to how Mono is, it might complain about SSL certificates. In this case, you will need to add a certificate validation
override before instantiating your bot in code. You can do that like so:

ServicePointManager.ServerCertificateValidationCallback = (s, cert, chain, ssl) => true;

Final remarks

Do note that in order to keep the bot running after you disconnect, you will need a terminal multiplexer, such as tmux or screen. On top
of that, you will need a way of ensuring the application is restarted after it crashes. Do note that if you run inside a docker container, the
multiplexer is not necessary, albeit recommended.

The latter can be done via a simple bash script, or using a system process manager integrated into your distribution or init system. The latter
is a proper approach, however it’s not trivial.

Simplest bash script that can autorestart your bot (while giving you a chance to shut it down completely) will look similarly to this:

#!/bin/bash

echo Using `which dotnet`
while true
do
 dotnet "$1"
 echo "Application crashed, restarting in 5 seconds..."
 sleep 5
done

Save as autorestart.sh, make executable via chmod +x autorestart.sh, then run like ./autorestart.sh Your.Project.dll, where Your.Project.dll
is your bot’s entry DLL. If you published for specific platform, just replace dotnet "$1" with "./$1". For mono, just do mono "$1".

And finally, it’s recommended you run your bot in something like Docker. This can improve security, and you would be able to restrict the resources
the bot is using to operate.

And never run your bot as root.

 Getting started with DSharpPlus

Getting started with DSharpPlus

Listed here is a couple of links that will help you start developing your own bots.

New to programming in C#?

Take a look at this tutorial series by Bob Tabor from MSDN Channel 9 [https://channel9.msdn.com/Series/C-Fundamentals-for-Absolute-Beginners]. They are excellent videos that go through all the basics, from setting up your development environment, to some of the more advanced concepts. If you’re lost, you should definitely give it a watch.

Looking for API documentation?

Head over to the Api Documentation page.

Example bots

If you’re looking for example bots, make sure to check out the following links:

	Emzi0767’s Example Bot Directory [https://github.com/Emzi0767/DSharpPlus-Example-Bot]

	Naamloos’ Example Bot [https://github.com/NaamloosDT/DSharpPlus-example]

Still confused?

You can contact us via Discord(duh!) using one of these servers:

#dotnet_dsharpplus on Discord API:[image: Discord API / #dotnet_dsharpplus] [https://discord.gg/discord-api]

Naamloos’ Guild:[image: Naamloos' Guild] [https://discord.gg/0oZpaYcAjfvkDuE4]

 API Reference

API Reference

Welcome to DSharpPlus API reference. To begin, select a namespace, then a class, from the table of contents on the left.

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_images/06_02_voice_leave.png
—GenerRAL—]

[P

39

D#

D#

A

My First DSharpPlus Bot 881

d

git commit --suicide [D E D]
iileave

My First DSharpPlus Bot 881

d

_images/02_05_manage_packages.png
=
GE- o-SaB@ K=

Search Solution Explorer (Ctrl+) p-

3 Soluton ‘MyFirstBot’ (1 project)

o ___m_

Rebuild Sy

Clean

Pack

@ Publish...

-

Ee

Scopeto This
New Solution Explorer View

v

Edit MyFistBot.csproj
Add ,
Manage NuGet Packages...

Set asStartUp Project

Debug ,
cut CHiex

Del

[

X &
7
:

Unload Project
© Open Folderin File Explorer
F Properties AlteEnter

- T Team Explorer Test Explorer

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_images/02_07_installing.png
D# DSharpPlus

D#' DSharpPlus by Nasmioos, afroreydude, DrCreo, Death, Aviom, Emz0767, and contributors, 7.06K downloads. 54§
A G APl for Discord based off DiscordSharp, but rewriten to it the APl standards.
Version: Lateststable 25,
' NCharnPlus Commandshlent b bl fosiids Dl iac Db Ao EailIED o 03K el 4 —

_images/06_04_voice_console.png
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28
2017-07-28

-
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

05
05
05
05
05
05
05
05
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06

m
16
52
52
52
se
se
se
03
03
03
09
09
09
1
n
n
15
15
15
20
20
20
26
26
26
2
2
2

36406kB time:

+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02
+02

00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]
00]

Vo ceext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Websocket]
Websocket]
Websocket]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]
Voicenext]

0:03:14.16 bitrate:

Debug]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]
Debue]

1536.0kbits/s spee:

0P3 or 0P received

Received voice heartbest ACK, ping

Sent heartbeatsex

0F3 or 0P received

Received voice heartbest ACK, ping

Sent heartbeatsslx

0F3 or 0PE received

Received voice heartbest ACK, ping

Sent heartbeatssax

0F3 or 0PE received

Received voice heartbest ACK, ping

Sent heartbeatssax

0P3 or 0P received

Received voice heartbest ACK, ping

Sending Heartbeatx

Received WebSocket Heartbeat Ack

Ping 175ms

Sent heartbeatsssx

0F3 or 0P received

Received voice heartbest ACK, ping

Sent heartbeatssex

0F3 or 0PE received

Received voice heartbest ACK, ping

Sent heartbeatssTx

0P3 or 0P received

Received voice heartbest ACK, ping

Sent heartbeatssex

0F3 or 0PE received

Received voice heartbest ACK, ping
0.968x

e

&Tme

&Tme

e

e

Tome.

ame

eme

&Tme

_images/05_02_identify_gnulinux_lsb.png
Using username "pi”.
Authenticating with public key "Emperor-Vitiate" from agent
Linux Lord-Raptus 4.9.27-v7+ $997 SMP Tue May 9 19:58:37 BST 2017 armv7l

The programs included with the Debian GNU/Linux system are free softwars
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Mon May 29 09:20:22 2017 from 10.0.1.1
pi@lord-Raptus:~ lsb_release -a

No LSB modules are available.

Distributor ID: Raspbian

Description: Raspbian GNU/Linux 2.0 (ascii)
Release: 2.0
Codename: ascii

pieLord-raptus:- ¢ I

_images/02_02_new_project.png
Get Started G=m

(et code from a remote version control ystem o open
. X something on your ocal drve.
i Vil S ek ot i Eotonal 3nd Sornple Broiecd
“ R Checkout from:

Getraining on new frameworks, languages, and technologies

9 HETES g & Visual Studio Team Services.
Creste a private code repo and backlog for your project

© Gittub

See how essy s to getstarted it cloud services

Discover ways to extend and customize the IDE] Open Project / Solution

2 Open Folder
Recent % Open Website
Yesterday .
New project
=) DsharpPlussin
-1 No\GiN\DSharpPlus-core\DSharpPlus.sin Search projecttemplates p-
[Emzi0767.CompanionCube.in Recent project templates:
- NVisual Studio 2017\Projects\Emzi0767.CompanionCube\Emzi0767.C.
@ Single-View App (Android) c#
This week T Cross Platform App (XamarinForms... C#

Emzi0767.CompanionCube.sin 'Win32 Proje Cot

R0 e arioumentvsst o 201cec EmsorsrCom. &2
¥ Class Library (NET Framework) c#
Last week £ Makefil Project Cor
HippoBench.sin B Console App (NET Framewor VB

5] HippoBenchsi PP (.

Ci\Users\emzi0\documentsvisual studio 2017\Projects\HippoBench.

oo Create new project.

_images/05_04_identify_bsd.png
Release Notes, Errata: http: -FreeBSD.org/releases/
Security Advisories: http .FreeBSD..org/security/

FreeBSD Handbook: hittps://uuu . FreeBSD . org,/handbook/

FreeBSD FAQ: .FreeBSD.org/faq/

Questions List: https://lists.FreeBSD.org/mailman/listinfo/freebsd-questions/
FreeBSD Foruns: https://foruns . FreeBSD.org,

Docunents installed with the system are in the susr/local/share/doc/freebsd/
directory, or can be installed later with: pkg install en-freebsd-doc
For other languages, replace “en” with a language code like de or fr.

Shou the version of FreeBSD installed: freebsd-version ; uname -a
Please include that output and any error messages when posting questions.
Introduction to manual pages: man man
FreeBSD directory layout: nan hier

Edit setc/motd to change this login amnouncement.
If other operating systens have damaged your Master Boot Record, you can
reinstall it with bootOcfg(8). See

"man bootOcfg” for details.

S uname -a

FreeBSD akuna 11.0-RELEASE-p1 FreeBSD 11.0-RELEASE-pl #0 r306420: Thu Sep 29 0
13:23 UIC 2016 root@releng2.nyi.freebsd.org: usr/ob j/usr/src/sys/GENERIC an
164

3 |

_images/01_02_app_data.png
New App

My First D#+ Bot

‘Something users will recognize and trust

This is an example description. You
can enter anything in here, really.

Maximum 400 characters

Cancel

By creating an APl application, you agree to the Discord API Terms of Service.

You must specify at east one URI for authentication to work If
you pass a URI in an OAuth request it must exactly match one
of the URIs you enter here. Learn more

APPICON

D#

_images/05_01_identify_win32.jpg
Control Panel Home

© Device Manager
© Remote setings

© System protection

© Advanced sstem settings

Seealso

Security and Maintenance

4 5 Control Panel > System and Security > System

View basic information about your computer
Windows edition

Windows 10 Pro.

© 2017 Microsoft Corporation. Al rights reserved.

System
Processor: Intel(R) Core(TM) i5-6600K CPU @ 350GHz 3.50 GHz
Installed memory (RAM): 320GB.

tem 64-bit tem, »64-based processor
Penand Touch: No Pen or Touch Input is available for this Display.

Computer name, domain, and workgroup settings.

Computer name: Emperor-Vitiate
Full computer name: Emperor-Vitiate
Computer description:

Workgroup: SITH-EMPIRE

Windows activation

Windows is activated Read the Microsoft Software License Terms.

procuct D

v|® | Search Control Panel »

am Windows10

@ Change settings

@ Change product ey

_images/01_01_new_app.png
My Apps

These are your apps. What do you expect this subtext to say!?!?

/o

/ADA Bot

BNE

BANE

3X

Dt 2\

DEV Bot PAM Bot

G /s

Companion Cube Assembler

;h}

Breencast

_images/03_01_hi.png
git commit --suicide [D E D]

D#' My First DSharpPlus Bot 669
| & Hi. @it commit suicide [DE D1 ¢

_images/03_02_random.png
git commit --suicide [D E D]
t sirandom 010

D' My First DSharpPlus Bot E88
® Your random number is: 5

_images/01_03_make_bot.png
GREAT SUCCESS!
Your sweet new appli

has been created successfully!

Client ID: 340261879026941954.
Client Secret: </ck (& rc/eal

You can bundle a Bot User with your app to interact with usersina
oot i Comosaver

Learn more about bot users.

= 1

AP NAME - REDIRECT URICS)
My First DSharpPlus Bot _
‘Something users will recognize and trust You must specify at least one URI for authentication to work_ I

you pass a URI in an OAuth request it must exactly match one
of the URIs you enter here. Learn more

APPDESCRIPTION APPICON

This is an example description. You

can enter anything in here, really. D #"

Maximum 400 characters Remove.

_images/02_01_vs_netcore.png
Modifying — Visual Studio Community 2017 — 15.2 (26430.14)

Workloads

Individual components Language packs

|m

Mobile development with JavaScript
Build Android, i0S and UWP apps using Tools for Apache Cordova.

Mobile development with C+~
Build cross-platform applications for 05, Android or Windows
using C=+

Game development with C++
Use the full power of =+ to build professional games powered by
DirectX, Unreal, or Cocos2d.

Other Toolsets (3)

Visual Studio extension development
Create add-ons and extensions for Visual Studio, including new
‘commands, code analyzers and tool windows.

|A

Linux development with C+
Create and debug applications running in a Linux environment.

NET Core cross-platform development
Build cross-platform applications using NET Core, ASPNET Core,
HTML, JavaScript, and CSS

CAProgram Files (X86)\Microsoft Visual Studio\20T7\Commurity

Summary

+ Individual components
Included

C# and Visual Basic Roslyn compilers
Visual G+ + compilers and libraries .
Visual C++ runtime for UWP
Windows 10 SDK (10.0.15063.0) for
MSBuild

Text Template Transformation
Windows 10 SDK (10.0.15063.0) for
Visual C++ ATL support

‘Windows Universal CRT SDK
Windows 8.1 SDK

MFC and ATL support (86 and 64)
NET Core runtime

SQL Search

GitHub Extension for Visual Studio

@ By continuing, you agree to the license for the.

Visual Stugio editon you selected. We also offer the
abilty to downioad other software with Visual
Studio. This software s lcensed separately, as set
ot inthe 3a Party Notices or in ts accompanying
ficense. By continuing, you lso agree to those
ficenses

Installsize: OKB

Modify

_images/04_01_hi_how_are_you.png
t- git commit --suicide [D E D]

D#' My First DSharpPlus Bot 669
| & Hi. @it commit suicide [DE D1 ¢

¢ git commit --suicide [D E D]
k how are you?

D #~ My First DSharpPlus Bot 81
I'm fine, thank you!

" git commit --suicide [D E D]

D#' My First DSharpPlus Bot 669
| & Hi. @it commit suicide [DE D1 ¢

{ git commit --suicide [D E D]
b hovareyo

spam

_images/02_06_nuget.png
ek st & X Progrom.cs

Browse Installed Updates

%/ @ M include prerciease

NuGet Package Manager: MyFirstBot

Package source: nuget.org

@

DSharpPlus by Naamoos,afroraydude, DiCreo, Death, Axiom, Emzi0767, and contributors, 7.06K downloads
A G APl for Discord based off DiscordSharp, but rewriten to it the APl standards.

DSharpPlus.CommandsNext by Naamloos, afroraycude, DrCreo, Death, Axiom, Emz0767, and contributors, 193K downloads
‘Advanced command framework for DSharpPlus.

DSharpPlus.WebSocket.WebSocketdNet by Naarmioos,afroraydude, DiCreo, Death, Aviom, Emzi0767, and contributors, 1.55K downloads
NOTE: This i an optional package. Do not nstll, unless you're targeting NETFX on Windows 7.

DSharpPlus.WebSocket.WebSocketSharp by Naamioos,afroraydude, DiCreo, Death, Axiom, Emzi0767, and contributors, 1.63K downloads
NOTE: Thisis an optional package. Do not nstall, unless you'e targeting Mono.

DSharpPlus.VoiceNext by Naamioos,afroraydude, DiCreo, Death, Axiom, Emzi0767, and contributors, 884 downloads
Voice implementation for DSharpPlus.

DSharpPlus.Interactivity by Naamloos, afroraydude, DrCreo, Death, Axiom, Emz0767, and contrbutors, 155K downloads
An addon that adds interactviy capabilties to commands.

V254

V254

V254

V254

V254

V254

_images/02_03_new_project_settings.png
)

Visual CG#

Visual CG#

Visual CG#

Visual CG#

Visual CG#

Visual CG#

Visual CG#

Visual CG#

Visual CG#

» Recent NET Framework 452~ Sortby: Defauit
4 Instlled
— Cross Platform App (Xamarin)
4 Templates
4 Visual CG# WPF App (NET Framework)
[—
Windows Classc Desktop
Web
NET Core
NET Standard
Android
Cloud
Cross-Pltform B i Ly T
s i0s 2 Standere)
= NG Clos ity (NET Framewory
> 10S ¢
wer .
FL] ASP.NET Web Applicaton (NET Fromenerk
» Visusl Basic ®. ¢ J
» Visusl Cos- §
ASP.NET Core Web, (NET Core
e ® p——
SQL Server §
S (53) ASPNET Core Web Appliction (NET Framenor
o
Not finding what you are looking for? E’TJ Shared Project
Online .
’ IR Clas Library Portable)
Name
Location: c\users\emzi0\documents\visual studio 2017\Projects
Solution MyFistBot

Search Installed Templates (Ctri+E)

Type: Visual C#

A project for creating a command-ine
application that can run on .NET Core on
Windows, Linux and MacOS.

p-

_images/05_03_identify_gnulinux_osrelease.png
pi@lord-Raptus:~ 5 1s —dl /etc/* | grep '\-release3’ | head -n 1 | xargs cat
PRETTY_NAME="Devuan GNU/Linux ascii/ceres”
NAME="Devuan GNU/Linux"

Ip-debian
Ip_LIKE-debian

VERSTON_